40

TABLE 7-continued

Excretion and Tissue Distribution of Radiolabelled GS-7340 in Dogs (Mean, N = 2) Following an Oral Dose at 10 mg-eq. PMPA/kg.

	GS-4331		GS-7340		Tissue Conc.
Tissue/Fluid	% Dose	Conc. (ug-eq/g)	% Dose	Conc. (ug-eq/g)	Ratio of GS 7340 to GS-4331
Bile	0.00	9.63	0.22	40.48	4.2
Feces	40.96	n.d.	0.19	n.d.	n.a.
Total GI Tract Contents	5.61	n.d.	21.64	n.d.	n.a.
Urine	23.72	n.d.	14.73	n.d.	n.a.
Plasma at 24 h	0.00	0.20	0.00	0.20	1.0
Plasma at 0.25 h	n.a.	3.68	n.a.	3.48	0.9
PBMC*	0.00	n.d.	0.00	63.20	n.d.
Whole Blood	0.00	0.85	0.16	0.20	0.2
Total Recovery	81.10		68.96		

Calculated using typical recovery of 15×10^6 cells total, and mean PBMC volume of 0.2 picoliters/cell

n.s. = no sample.

n.a. = not applicable,

n.d. = not determined.

The invention claimed is:

1. A diastereomerically enriched compound having the $_{25}$ structure (3)

$$B - E - CH_2O - P - R^1$$

$$R^2$$
(3)

which contains less than 40% by weight of the diastereomer

B—E—CH₂O—
$$\stackrel{O}{\underset{\stackrel{.}{=}}{\parallel}}$$
 R

wherein

R1 is an oxyester which is hydrolyzable in vivo, or hydroxyl;

B is a heterocyclic base;

 R^2 is hydroxyl, or the residue of an amino acid bonded to $_{45}$ the P atom through an amino group of the amino acid and having each carboxy substituent of the amino acid optionally esterified, but not both of R1 and R2 are hydroxyl;

E is
$$-(CH_2)_2$$
—, $-CH(CH_3)CH_2$ —, $-CH(CH_2F)_{50}$ CH_2 —, $-CH(CH_2OH)CH_2$ —, $-CH(CH_2CH_2)_{50}$ CH_2 —, $-CH(C=CH)CH_2$ —, $-CH(CH_2N_3)$ CH_3 —,

 $-CH(R^6)OCH(R^6)$ —, $-CH(R^9)CH_2O$ — or $-CH^{60}$ (R⁸)O—, wherein the right hand bond is linked to the heterocyclic base;

the broken line represents an optional double bond;

R⁴ and R⁵ are independently hydrogen, hydroxy, halo, amino or a substituent having 1-5 carbon atoms 65 selected from acyloxy, alkyoxy, alkylthio, alkylamino and dialkylamino;

 R^6 and R^6 'are independently H, C_1 - C_6 alkyl, C_1 - C_6

hydroxyalkyl, or C₂-C₇ alkanoyl;

R⁷ is independently H, C₁-C₆ alkyl, or are taken together to form —O— or —CH₂—;

R⁸ is H, C₁-C₆ alkyl, C₁-C₆ hydroxyalkyl or C₁-C₆ haloalkyl; and

R9 is H, hydroxymethyl or acyloxymethyl;

and their salts, free base, and solvates.

2. The compound of claim 1 containing less than 20% by weight of the diastereomer (4).

3. The compound of claim 1 containing less than 5% by weight of the diastereomer (4).

4. A diastereomerically enriched compound having the structure (5a) (5a)

$$\begin{array}{c}
R^{11} \\
N \\
N \\
N \\
N \\
R^{12} \\
O \\
R^{6} \\
N \\
N \\
N \\
N \\
O \\
R^{6}$$

which contains less than 40% by weight of diastereomer (5b)